Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.
Methods: Ultra-performance liquid chromatography tandem mass spectrometry was used to detect TRP and its seven metabolites in a study involving 986 participants. Physical examination included the following indicators: blood pressure, body mass index, triglyceride levels, and high-density lipoprotein cholesterol (HDL-C) levels. Multiple linear regression, restricted cubic spline curve, binary logistic analysis, and sex-stratified analysis were used to explore the relationship between the metabolites and the risk of MetS in older adults.
Results: The results indicated that, after adjusting for covariates, higher levels of TRP, KYN, kynurenic acid (KA), and xanthurenic acid (XA) were risk factors for MetS (P for trend < 0.05). By contrast, higher ratios of 5-hydroxytryptamine to TRP and indole-3-propionic acid to TRP were protective factors against MetS (P for trend < 0.05).
Conclusions: TRP and its metabolites may serve as potential indicators for assessing and managing MetS in older adults, complementing existing biomarkers.
Clinical trial number: Not applicable.
Keywords: Metabolic syndrome; Metabolism; Older adults; Tryptophan.
© 2024. The Author(s).