Cerebrospinal fluid (CSF) has emerged as a valuable liquid biopsy source for glioma biomarker discovery and validation. CSF produced within the ventricles circulates through the subarachnoid space, where the composition of glioma-derived analytes is influenced by the proximity and anatomical location of sampling relative to tumor, in addition to underlying tumor biology. The substantial gradients observed between lumbar and intracranial CSF compartments for tumor-derived analytes underscore the importance of sampling site selection. Moreover, radiographic features, such as tumor-CSF contact and blood-brain barrier (BBB) disruption, are critical covariates that may affect biomarker detectability and the abundance of plasma-derived analytes in CSF, respectively. Longitudinal intracranial CSF sampling, enabled by access devices like Ommaya reservoirs, may offer a window into treatment response and disease progression, though variability in analyte yield, sample volumes, and the dynamic effects of surgical resection pose challenges. This review critically evaluates the anatomic, radiographic, and longitudinal factors that impact glioma CSF biomarker abundance. Practical considerations for longitudinal CSF biobanking, including access device placement and collection, are also reviewed. Key takeaways and recommendations for CSF glioma biomarker discovery and validation are provided based on our collective experience, along with resources for investigators aiming to develop CSF biobanking at their institutions.
Keywords: biomarker; cerebrospinal fluid; glioma; monitoring; neuro-oncology.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.