pmiRScan: a LightGBM based method for prediction of animal pre-miRNAs

Funct Integr Genomics. 2025 Jan 9;25(1):9. doi: 10.1007/s10142-025-01527-y.

Abstract

MicroRNAs (miRNA) are categorized as short endogenous non-coding RNAs, which have a significant role in post-transcriptional gene regulation. Identifying new animal precursor miRNA (pre-miRNA) and miRNA is crucial to understand the role of miRNAs in various biological processes including the development of diseases. The present study focuses on the development of a Light Gradient Boost (LGB) based method for the classification of animal pre-miRNAs using various sequence and secondary structural features. In various pre-miRNA families, distinct k-mer repeat signatures with a length of three nucleotides have been identified. Out of nine different classifiers that have been trained and tested in the present study, LGB has an overall better performance with an AUROC of 0.959. In comparison with the existing methods, our method 'pmiRScan' has an overall better performance with accuracy of 0.93, sensitivity of 0.86, specificity of 0.95 and F-score of 0.82. Moreover, pmiRScan effectively classifies pre-miRNAs from four distinct taxonomic groups: mammals, nematodes, molluscs and arthropods. We have used our classifier to predict genome-wide pre-miRNAs in human. We find a total of 313 pre-miRNA candidates using pmiRScan. A total of 180 potential mature miRNAs belonging to 60 distinct miRNA families are extracted from predicted pre-miRNAs; of which 128 were novel and are note reported in miRBase. These discoveries may enhance our current understanding of miRNAs and their targets in human. pmiRScan is freely available at http://www.csb.iitkgp.ac.in/applications/pmiRScan/index.php .

Keywords: Machine learning; Non-coding RNA; Taxonomic groups; micro-RNA; pre-miRNA.

MeSH terms

  • Animals
  • Humans
  • MicroRNAs* / genetics
  • RNA Precursors / genetics
  • Software

Substances

  • MicroRNAs
  • RNA Precursors