Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R. palustris, a purple non-sulfur anoxygenic photosynthetic bacterium, to reduce ferrihydrite (Fh) and its correlation with sulfamethazine (SDZ) degradation were firstly investigated. The results revealed that R. palustris could undergo photoheterotrophic extracellular reduction of Fh to form goethite through direct contact, facilitating the formation of conductive bands and enter the interior of cells with a maximum Fe(II)/Fe(T) ratio of up to 39 % within 8 days which led to 13 % increase in assimilation rate of acetate carbon and 53.2 % increase in SDZ degradation rates, as compared with those by R. palustris alone. Moreover, the intermediates generated during the degradation of SDZ by R. palustris-Fh exhibited relatively lower developmental toxicity compared with the original SDZ molecule. The extracellular reduction of Fh significantly up-regulated the expression of genes related to photosynthetic metabolic enzymes, extracellular electron transporters, and extracellular degrading enzymes in R. palustris. This enhancement promoted the photoheterotrophic metabolism and extracellular secretion of photosensitive active compounds in R. palustris, thereby enhancing both the biodegradation and photosensitive degradation of SDZ.
Keywords: Anoxygenic photosynthetic bacteria; Ferrihydrite; Gene regulation; Photoheterotrophic extracellular reduction; R. palustris-Fh composites; Sulfadiazine.
Copyright © 2025. Published by Elsevier Ltd.