Enzymes are natural biocatalysts with the advantages such as high catalytic efficiency, and strong substrate selectivity. However, the features of structure instability and low reusability rates have limited the industrial applications of enzyme. Fortunately, advancements in technology have made enzyme immobilization possible. Porous microspheres possess desirable characteristics, for example a large specific surface area, high porosity, stable mechanical and chemical properties, and cost-effectiveness, making them excellent carriers for immobilized enzymes. This review covered the latest developments in the field and the utilization of porous microsphere nanomaterials for enzyme immobilization. It emphasized the various methods used for carrier immobilization of enzymes and summarized the diverse applications of porous microsphere nanomaterials in enzyme immobilization.
Keywords: Enzyme immobilization; Fixing method; Performance study; Porous microspheres.
Copyright © 2025. Published by Elsevier B.V.