Selective therapeutic targeting of T-cell malignancies is difficult due to the shared lineage between healthy and malignant T cells. Current front-line chemotherapy for these cancers is largely nonspecific, resulting in frequent cases of relapsed/refractory disease. The development of targeting approaches for effectively treating T-cell leukemia and lymphoma thus remains a critical goal for the oncology field. Here, we report the discovery of a DNA aptamer, named HR7A1, that displays low nanomolar affinity for the integrin α4β1 (VLA-4), a marker associated with chemoresistance and relapse in leukemia patients. After truncation of HR7A1 to a minimal binding motif, we demonstrate elevated binding of the aptamer to T-lineage cancer cells over healthy immune cells. Using cryo-EM and competition studies, we find that HR7A1 shares an overlapping binding site on α4β1 with fibronectin and VCAM-1, which has implications for sensitizing blood cancers to chemotherapy. We last characterize barriers to in vivo aptamer translation, including serum stability, temperature-sensitive binding, and short circulation half-life, and synthesize an aptamer-polymer conjugate that addresses these challenges. Future work will seek to validate in vivo targeting of α4β1+ tumors with the conjugate, establishing an aptamer-based biomaterial that can be readily adapted for targeted treatment of T-cell malignancies.
Keywords: DNA aptamers; cancer targeting; integrins; polymers; very late antigen-4.