Smart crop disease monitoring system in IoT using optimization enabled deep residual network

Sci Rep. 2025 Jan 9;15(1):1456. doi: 10.1038/s41598-025-85486-1.

Abstract

The Internet of Things (IoT) has recently attracted substantial interest because of its diverse applications. In the agriculture sector, automated methods for detecting plant diseases offer numerous advantages over traditional methods. In the current study, a new model is developed to categorize plant diseases within an IoT network. The IoT network is simulated for monitoring crop diseases. Routing is performed with Henry Gas Chicken Swarm Optimization (HGCSO), which is designed by integrating Henry Gas Solubility Optimization (HGSO) and Chicken Swarm Optimization (CSO). The fitness parameters of the model include delay, energy, distance, and link lifetime (LLT). At the Base Station (BS), plant disease categorization is performed by collecting plant leaf images. Preprocessing is done on the input images using median filtering. Various features, such as Histogram of Oriented Gradient (HoG), statistical features, Spider Local Image Features (SLIF), and Local Ternary Patterns (LTP) are extracted. Plant disease categorization is carried out using a Deep Residual Network (DRN), which is trained using the developed Caviar Henry Gas Chicken Swarm Optimization (CHGCSO) that combines the CAViaR model with HGCSO. Comparative results show an accuracy of 94.3%, a maximum sensitivity of 93.3%, a maximum specificity of 92%, and an F1-score of 93%, indicating that the CHGCSO-based DRN outperforms existing methods. Graphic Abstract.

Keywords: Deep residual network; Internet of Things; Smart crop disease monitoring; Spider local image features.

MeSH terms

  • Algorithms
  • Crops, Agricultural*
  • Deep Learning
  • Internet of Things*
  • Plant Diseases*