We have employed a triazine-based conjugated polymer network (CPN) for the selective detection of hypochlorite in a semi-aqueous environment. CPNs have been widely employed in gas capture, separation, and adsorption, but the fluorescent properties of CPNs possessing extensive π-conjugated systems tend to be unexplored. Herein, we report the photophysical properties of the CPN and investigate its sensing capability towards hypochlorite. Spectroscopic investigations reveal that the CPN forms π-stacked aggregates in aqueous medium, while loose aggregates were observed to be formed in hydrophobic solvents. The fluorogenic CPN demonstrates remarkable selectivity via fluorescence quenching and a blueshift response towards hypochlorite in a semi-aqueous medium, accompanied by a color change under UV light. Such a turn-off fluorescence response, along with the blue shift upon hypochlorite sensing, was attributed to the oxidation of the sulfur atom of the thiophene functionality of the CPN, consequently resulting in suppression of Intramolecular Charge Transfer (ICT) in the corresponding oxidized adduct. The fluorescence intensity of the CPN exhibits a linear response to hypochlorite concentration, achieving a low detection limit of 1.2 nM. Furthermore, the practical applicability was demonstrated by the detection of hypochlorite in water samples and fluorescent test-paper strips. Additionally, the present system is utilized for bio-imaging of endogenous hypochlorite in RAW 264.7 cells.
This journal is © The Royal Society of Chemistry.