Nonconventional Full-Color Luminescent Polyurethanes: Luminescence Mechanism at the Molecular Orbital Level

ACS Mater Lett. 2024 Nov 21;7(1):24-31. doi: 10.1021/acsmaterialslett.4c02100. eCollection 2025 Jan 6.

Abstract

The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint. Detailed experimental and theoretical results show that the PUs have different temperature-dependent behaviors related to the interplay of H-bonding, through-space n-π interactions, and aggregation properties. The potential applications of PUs in colorful displays, covert information transmission, and multifunctional bioimaging have been verified. This work provides a new general protocol for the simple preparation of multifunctional nonconventional fluorescent polymers and deepens the understanding of their luminescence mechanisms.