Integrated UHPLC-mS/mS analysis, spectrum-effect relationship, and molecular docking to study the antidiabetic components of Cyclocarya paliurus

Nat Prod Res. 2025 Jan 10:1-9. doi: 10.1080/14786419.2024.2448200. Online ahead of print.

Abstract

The leaves of Cyclocarya paliurus (Batal) Iljinsk., a plant native to China that has long been used in traditional Chinese medicine to treat diabetes. It remains to be determined what chemical constituents are responsible for this effect. The aim of this study was to identify the antidiabetic components of C. paliurus using the spectrum-effect relationship and confirmed using molecular docking. The components of C. paliurus were detected using ultra-high-performance liquid chromatography mass spectrometry/mass spectrometry (UHPLC-MS/MS) and ultra-high-performance liquid chromatography-diode array detector (UHPLC-DAD). C. paliurus could significantly reduce glycosylated haemoglobin, blood glucose levels and blood lipid profile. Esculetin, shikimic acid, isoquercitrin, quercitrin, kaempferol-3-O-rhamnoside, tricin, and pterocaryoside A were determined to be the main antidiabetic components of C. paliurus. Results revealed that the antidiabetic effect of C. paliurus was due to the combination of multiple chemical components. The method developed is valuable for identifying the active ingredients of this plant species.

Keywords: Cyclocarya paliurus; antidiabetic; molecular docking; spectrum-effect relationship.