Constant di/dz scanning tunneling microscopy: Atomic precision imaging and hydrogen depassivation lithography on a Si(100)-2 × 1:H surface

Rev Sci Instrum. 2025 Jan 1;96(1):013701. doi: 10.1063/5.0239000.

Abstract

We introduce a novel control mode for Scanning Tunneling Microscope (STM) that leverages di/dz feedback. By superimposing a high-frequency sinusoidal modulation on the control signal, we extract the amplitude of the resulting tunneling current to obtain a di/dz measurement as the tip is scanned over the surface. A feedback control loop is then closed to maintain a constant di/dz, enhancing the sensitivity of the tip to subtle surface variations throughout a scan. This approach offers distinct advantages over conventional constant-current imaging. We demonstrate the effectiveness of this technique through high-resolution imaging and lithographic experiments on several Si(100)-2 × 1:H surfaces. Our findings, validated across multiple STM systems and imaging conditions, pave the way for a new paradigm in STM control, imaging, and lithography.