Multi-material Electrohydrodynamic Printing of Bioelectronics with Sub-Microscale 3D Gold Pillars for In Vitro Extra- and Intra-Cellular Electrophysiological Recordings

Adv Sci (Weinh). 2025 Jan 10:e2407969. doi: 10.1002/advs.202407969. Online ahead of print.

Abstract

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings. EHDP is employed to fabricate conductive circuits for signal transmission, which are passivated by polyimide via extrusion-based printing. Laser-assisted EHDP is developed to produce 3D gold pillars featuring a diameter of 0.64 ± 0.04 µm. The 3D gold pillars demonstrate stable conductivity under the cell-culture environment. Living cells can conformally grow onto these sub-microscale 3D pillars with a height below 5 µm, which facilitates the highly-sensitive recording of extracellular signals with amplitudes <15 µV. The 3D pillars can apply electroporation currents to reversibly open the cellular membrane for intracellular recording, facilitating the measurement of subtle cellular electrophysiological activities. As a proof-of-concept demonstration, fully-printed chips with multiple culturing chambers and sensing bioelectronics are fabricated for zone-specific electrophysiological recording in drug testing. The proposed multi-material EHDP strategy enables rapid prototyping of organ-on-a-chip systems with 3D bioelectronics for high-quality electrophysiological recordings.

Keywords: 3D gold pillars; bioelectronics; electrohydrodynamic printing; electrophysiological recording; multi‐material printing.