Multidimensional analysis of the flavor characteristics of yellow peach at different ripening stages: Chemical composition profiling and sensory evaluation

Food Chem. 2025 Jan 7:471:142772. doi: 10.1016/j.foodchem.2025.142772. Online ahead of print.

Abstract

The flavor evolution of yellow peaches during ripening was investigated using a gas chromatography-mass spectrometer (GC-MS), metabolomics, and electronic sensoristic techniques. Of the 41 volatiles quantified, 13 increased the intensity of the aroma based on the odor activity values (OAVs). Additionally, 142 non-volatile compounds were identified. Metabolic pathway analysis indicated that the formation of xanthophyll esters, due to substrate competition, resulted in a reduction of carotenoid-derived volatiles. Electronic nose (E-nose) analysis revealed that the key sensor W1C-associated volatiles had a green aroma, while W1S and W2S-associated volatiles showed a fruity aroma. Electronic tongue (E-tongue) analysis revealed that L-norleucine, L-isoleucine, isoleucine, L-tyrosine, L-valine, 4-Hydroxybenzaldehyde, cinnamic acid, and rutin positively correlated with umami and sweetness. Conversely, cis-aconitic acid and (-)-epigallocatechin positively correlated with sourness or astringency. Moreover, 20 volatiles, including γ-decalactone, linalool, and (Z)-3-hexenyl acetate, were positively correlated with umami or sweetness, while 7 volatiles were positively correlated with sourness or astringency.

Keywords: E-nose, E-tongue; Flavor; GC–MS; Metabolomics; OAVs; Yellow peach.