Real-time quantification of microfluidic hydrogel crosslinking via gas-phase electrophoresis

J Colloid Interface Sci. 2025 Jan 7;684(Pt 1):201-212. doi: 10.1016/j.jcis.2025.01.035. Online ahead of print.

Abstract

This study presents a novel approach for the controlled synthesis and real-time characterization of crosslinked hyaluronic acid (HA) hydrogels utilizing a microfluidic platform coupled with hyphenated electrospray-differential mobility analysis (ES-DMA). By precisely controlling key synthesis parameters within the microfluidic environment, including pH, temperature, reaction time, and the molar ratio of HA to crosslinker (1,4-butanediol diglycidyl ether, BDDE), we successfully synthesized HA hydrogels with tailored size and properties. The integrated ES-DMA system provides rapid, in-line analysis of hydrogel particle size and distribution, enabling real-time monitoring and optimization of the synthesis process. Furthermore, small-angle x-ray scattering (SAXS) was employed to complement ES-DMA analysis, providing valuable insights into the internal structure and extent of crosslinking within the synthesized hydrogels. The evolution of the number-based particle size distribution revealed a strong correlation with the synthesis conditions, demonstrating the high degree of controllability achieved by this integrated approach. This novel methodology offers a promising platform for the high-throughput synthesis of uniform and well-defined hydrogel nanoparticles with enhanced traceability, paving the way for advancements in various applications including drug delivery, tissue engineering, and biomaterials.

Keywords: Aerosol; Colloid; Electrospray; Hydrogels; Microfluidic.