This study presents a novel approach for the controlled synthesis and real-time characterization of crosslinked hyaluronic acid (HA) hydrogels utilizing a microfluidic platform coupled with hyphenated electrospray-differential mobility analysis (ES-DMA). By precisely controlling key synthesis parameters within the microfluidic environment, including pH, temperature, reaction time, and the molar ratio of HA to crosslinker (1,4-butanediol diglycidyl ether, BDDE), we successfully synthesized HA hydrogels with tailored size and properties. The integrated ES-DMA system provides rapid, in-line analysis of hydrogel particle size and distribution, enabling real-time monitoring and optimization of the synthesis process. Furthermore, small-angle x-ray scattering (SAXS) was employed to complement ES-DMA analysis, providing valuable insights into the internal structure and extent of crosslinking within the synthesized hydrogels. The evolution of the number-based particle size distribution revealed a strong correlation with the synthesis conditions, demonstrating the high degree of controllability achieved by this integrated approach. This novel methodology offers a promising platform for the high-throughput synthesis of uniform and well-defined hydrogel nanoparticles with enhanced traceability, paving the way for advancements in various applications including drug delivery, tissue engineering, and biomaterials.
Keywords: Aerosol; Colloid; Electrospray; Hydrogels; Microfluidic.
Copyright © 2025. Published by Elsevier Inc.