Resilience and Response of Anaerobic Digestion Systems to Short-term Hydraulic Loading Shocks: Focusing on Total and Active Microbial Community Dynamics

Environ Res. 2025 Jan 8:120801. doi: 10.1016/j.envres.2025.120801. Online ahead of print.

Abstract

Anaerobic digestion is known to be sensitive to operational changes, such as hydraulic loading shock, yet the impact on the microbiome, particularly the active RNA-based community, has not been fully understood. This study aimed to investigate the performance of anaerobic reactors and their microbial communities under short-term hydraulic loading shocks. Using synthetic wastewater, the reactor was subjected to 24-hour shocks at three-fold and seven-fold the baseline loading rate, followed by DNA and RNA analyses to assess the system's resiliency and microbial responses. The research focused on shifts in major microbial groups and their functions, paying close attention to the active RNA community during loading shock events to better reflect the system's immediate condition. Findings indicated that although the microbial community structure, particularly among the archaea, was altered, the reactor quickly regained its balance. Differences were observed between DNA and RNA profiles and between regular and shock loadings; however, the alpha diversity and functions of the overall community were sustained. This study offers important insights for the design and operation of wastewater treatment plants, with the goal of achieving stable and efficient anaerobic digestion systems.

Keywords: active community; loading shock; methane yield; microbial community; resilience.