Thiosemicarbazone-Based Compounds: A Promising Scaffold for Developing Antibacterial, Antioxidant, and Anticancer Therapeutics

Molecules. 2024 Dec 31;30(1):129. doi: 10.3390/molecules30010129.

Abstract

This paper presents the synthesis and characterization of new thiosemicarbazone derivatives with potential applications as antibacterial, antioxidant and anticancer agents. Six thiosemicarbazone derivatives (L-L5) were synthesized by reacting an appropriate thiosemicarbazide derivative with 2-pyridinecarboxaldehyde. The structures of the obtained compounds were confirmed using mass spectrometry, infrared spectroscopy, and NMR spectroscopy. Antibacterial activity was evaluated by using the microdilution method, determining the minimum inhibitory concentration (MIC) against a panel of Gram-positive and Gram-negative bacteria. Compound L1 showed the most potent antibacterial activity, especially against Bacillus cereus (MIC 10 mg/L). Molecular docking to topoisomerase II and transcriptional regulator PrfA suggests that the studied compounds can effectively bind to molecular targets recognized in anticancer and antibacterial therapies. An assessment of physicochemical properties (ADME) indicates favorable parameters of the compounds as potential drugs. Compounds L and L2 showed the highest antioxidant activity, surpassing the activity of the Trolox standard. Cytotoxicity against A549 lung cancer cells was evaluated by the MTT assay. Compound L4 exhibited the strongest inhibitory effect on cancer cell survival. The obtained results indicate that the synthesized thiosemicarbazide derivatives, especially L1, L2, and L4, are promising compounds with potential applications as antibacterial and anticancer drugs.

Keywords: antibacterial activity; anticancer therapeutics; antioxidant; thiosemicarbazone.

MeSH terms

  • A549 Cells
  • Anti-Bacterial Agents* / chemical synthesis
  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Antioxidants* / chemical synthesis
  • Antioxidants* / chemistry
  • Antioxidants* / pharmacology
  • Cell Survival / drug effects
  • Gram-Negative Bacteria / drug effects
  • Gram-Positive Bacteria / drug effects
  • Humans
  • Microbial Sensitivity Tests*
  • Molecular Docking Simulation*
  • Molecular Structure
  • Structure-Activity Relationship
  • Thiosemicarbazones* / chemical synthesis
  • Thiosemicarbazones* / chemistry
  • Thiosemicarbazones* / pharmacology

Substances

  • Thiosemicarbazones
  • Anti-Bacterial Agents
  • Antioxidants
  • Antineoplastic Agents

Grants and funding

This research received no external funding.