The preparation of biological phenolic resin (PF) with green recyclable biomaterials instead of phenol is a research hotspot for solving current resource and environmental problems. In this study, on the basis of introducing lignin into the phenolic system, daidzein of a renewable resource with a rigid structure was selected to modify lignin-based phenolic resin (LPF), and the improvement of the mechanical and thermal properties of the modified phenolic resin under different substitution ratios was studied. The friction materials were prepared with a daidzein-modified lignin-based phenolic resin (D-LPF) as the matrix binder, and their effects on the mechanics and friction and wear properties of friction materials were investigated. The results show that when the proportion of daidzein replacing phenol is 12%, the highest Tp can reach 152.4 °C, and the Tg of the modified D-LPF resins is significantly higher than those of PF and LPF. The highest Ts of D-LPF is 203.3 °C, which is also significantly higher than those of PF and LPF (184.7 °C and 174.6 °C, respectively). The maximum carbon residue rate at 800 °C is 64.2% and is greatly improved compared with the 55.1% and 56.7% of PF and LPF. The bending strength and impact strength of D-LPF-matrix friction materials are obviously higher than those of PF- and LPF-matrix friction materials. The specific wear rate of D-LPF-matrix friction materials is 0.70 × 10-4 mm3/Nm, which is obviously lower than those of PF- and LPF-matrix friction materials and shows good applicational prospect as a matrix resin in friction materials.
Keywords: biological phenolic resin; environmentally friendly materials; friction material; improvement of thermo-mechanical properties; preparation; wear resistance.