This article presents a comprehensive examination of the combined catalytic conversion technology for nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the primary factors contributing to the formation of photochemical smog, ozone, and PM2.5. These pollutants present a significant threat to air quality and human health. The article examines the reaction mechanism and interaction between photocatalytic technology and NH3-SCR catalytic oxidation technology, highlighting the limitations of the existing techniques, including catalyst deactivation, selectivity issues, regeneration methods, and the environmental impacts of catalysts. Furthermore, the article anticipates prospective avenues for research, underscoring the necessity for the development of bifunctional catalysts capable of concurrently transforming NOx and VOCs across a broad temperature spectrum. The review encompasses a multitude of integrated catalytic techniques, including selective catalytic reduction (SCR), photocatalytic oxidation, low-temperature plasma catalytic technology, and biological purification technology. The article highlights the necessity for further research into catalyst design principles, structure-activity relationships, and performance evaluations in real industrial environments. This research is required to develop more efficient, economical, and environmentally friendly waste gas treatment technologies. The article concludes by outlining the importance of collaborative management strategies for VOC and NOx emissions and the potential of combined catalytic conversion technology in achieving these goals.
Keywords: catalysis; combined conversion; nitrogen oxide; volatile organic compound.