Numerical Study on the Shear Behavior of a Late-Model Cold-Formed Stainless Steel C-Shaped Beam

Materials (Basel). 2024 Dec 28;18(1):91. doi: 10.3390/ma18010091.

Abstract

The failure mode of thin-walled C-channel beams typically manifests as premature local buckling of the compression flange, leading to insufficient utilization of material strength in both the flange and the web. To address this issue, this study adopts the approach of increasing the number of bends to reinforce the flange and adding V-shaped stiffeners in the middle of the web to reduce the width-to-thickness ratio of the plate elements, thereby delaying local buckling and allowing for greater plastic deformation. However, the challenge lies in the irregular cross-sectional shape and complex buckling patterns. Therefore, this paper aims to explore a suitable cross-sectional form to expand the application of stainless steel members. Subsequently, three-point bending tests were conducted on the optimally designed stainless C-channel beam with folded flanges and mid-web stiffeners. The finite element simulation results were compared and analyzed with the experimental results to validate the model's effectiveness. After verifying the correctness of the finite element model, this study conducted numerical parameterization research to investigate the effects of the shear span ratio, complex edge stiffeners, web height-thickness ratio, and V-shaped stiffener size on the shear performance of stainless steel folded flange C-beams. The results show that changing the shear span ratio has a significant impact on the shear capacity and vertical deflection deformation of components; increasing the web height-thickness ratio can enhance the shear capacity of the component; elevating the V-shaped stiffener size can slightly improve the shear capacity of components; and for the stainless steel C-shaped beam with folded flanges and intermediate stiffening webs, adding edge stiffeners cannot remarkably promote the shear capacity of the component.

Keywords: folded flange; parametric research; shear capacity; stainless steel; stiffening web.