Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review

Foods. 2025 Jan 2;14(1):105. doi: 10.3390/foods14010105.

Abstract

As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage. Key issues such as fat separation, lipid oxidation, and rancidity can significantly compromise its texture, flavor, and aroma, while also reducing its shelf life. Understanding the underlying mechanisms that drive these processes is essential for developing effective preservation strategies. This understanding not only aids food scientists and industry professionals in improving product quality but also enables health-conscious consumers to make informed decisions regarding the selection and storage of peanut butter. Recent research has focused on elucidating the mechanisms responsible for the quality deterioration of peanut butter, with particular attention to the intermolecular interactions among its key components. Current regulatory techniques aimed at improving peanut butter quality encompass raw material selection, advancements in processing technologies, and the incorporation of food additives. Among these innovations, plant protein nanoparticles have garnered significant attention as a promising class of green emulsifiers. These nanoparticles have demonstrated potential for stabilizing peanut butter emulsions, thereby mitigating fat separation and oxidation while aligning with the growing demand for environmentally friendly food production. Despite these advances, challenges remain in optimizing the stability and emulsifying efficiency of plant protein nanoparticles to ensure the long-term quality and stability of peanut butter. Future research should focus on improving the structural properties and functional performance of these nanoparticles to enhance their practical application as emulsifiers. Such efforts could provide valuable theoretical and practical insights into the development of stable, high-quality peanut butter, ultimately advancing the field of food science and technology.

Keywords: nutrient composition; peanut butter; processing; quality deterioration; regulatory techniques.

Publication types

  • Review