The hemispherical resonator gyroscope is a gyroscope based on the principle of Coriolis vibration, widely used in inertial measurement systems of spacecraft. This article decomposes the gyroscope into two parts: the resonator shell and the gyroscope head, establishes the energy dissipation mechanism of the gyroscope, and conducts experimental verification. Firstly, based on the working principle of the gyroscope, a mechanical analysis model of the hemispherical resonator gyroscope head with a resonator spherical shell containing quality defects under second-order vibration state was established. The unbalanced force applied by the resonator spherical shell to the hemispherical resonator gyroscope head was analyzed, and the energy transfer path and dissipation mechanism from the spherical shell to the hemispherical resonator gyroscope head were explained. Finally, through the constructed testing platform, the circumferential quality factor test of the hemispherical resonator gyroscope before and after assembly was completed according to the designed experimental plan, and the consistency between theory and experimental phenomena was verified experimentally.
Keywords: dissipation mechanism; energy transfer path; hemispherical resonator gyroscope; quality factor.