Breast cancer (BC) is one of the most lethal cancers worldwide, and its early diagnosis is critical for improving patient survival rates. However, the extraction of key information from complex medical images and the attainment of high-precision classification present a significant challenge. In the field of signal processing, texture-rich images typically exhibit periodic patterns and structures, which are manifested as significant energy concentrations at specific frequencies in the frequency domain. Given the above considerations, this study is designed to explore the application of frequency domain analysis in BC histopathological classification. This study proposes the dual-branch adaptive frequency domain fusion network (AFFNet), designed to enable each branch to specialize in distinct frequency domain features of pathological images. Additionally, two different frequency domain approaches, namely Multi-Spectral Channel Attention (MSCA) and Fourier Filtering Enhancement Operator (FFEO), are employed to enhance the texture features of pathological images and minimize information loss. Moreover, the contributions of the two branches at different stages are dynamically adjusted by a frequency-domain-adaptive fusion strategy to accommodate the complexity and multi-scale features of pathological images. The experimental results, based on two public BC histopathological image datasets, corroborate the idea that AFFNet outperforms 10 state-of-the-art image classification methods, underscoring its effectiveness and superiority in this domain.
Keywords: breast cancer; deep learning; feature fusion; frequency domain; histopathological classification.