Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it. A chlorination roasting was firstly used to selectively recover copper and nickel, in which they were chlorinated and volatilized while chromium and iron retained in the residue in the forms of FeCr2O4 and Fe2O3. A certain FeS2 promoted the conversion of the chlorinating agent of NaClO to Cl2 (g), increasing the copper and nickel chlorination. Though Cr2S3 could be chlorinated and volatilized, a high O2 partial pressure oxidized it to Cr2O3 and reduced it chlorination. Under the optimal condition, the chlorination of copper and nickel obtained 99.1 % and 92.6 % respectively, while that of chromium was only 5.7 %. In the followed silicothermic reduction, a silicon cutting waste (Si-CW) was employed as reductant to recover chromium and iron from the roasted residue, due to the reduction capacity of Si and SiC phases in it. The chromium and iron oxides were reduced and recycled in an Fe-Cr alloy ingot, and Si and SiC changed to a refractory SiO2 and entered into the slag. CaO could be slagged with SiO2 and converted to a slag-liquid phase, which accelerated the separation between alloy and slag. The chromium and iron yields could obtain 97.6 % and 98.9 %, respectively. This study supplied a new method to co-treat two wastes for recovering nickel, iron, copper and chromium.
Keywords: Electroplating sludge; Pyro-metallurgy; Recycling; Solar-grade silicon cutting waste; Waste-treat-waste.
Copyright © 2024 Elsevier Ltd. All rights reserved.