Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy. Here, we propose a new SPR imaging biosensing approach to detect tumour DNA circulating in the blood of colorectal cancer patients by exploiting the unique properties of superparamagnetic particles. Micrometer beads functionalized with a biotinylated oligonucleotide can directly capture DNA target sequences bearing single-nucleotide variations of KRAS oncogene in human blood plasma. Mutated and wild-type peptide nucleic acid probes immobilized on an SPR gold surface recognize complementary and non-complementary DNA targets by discriminating a single nucleotide mismatch. The new assay allows for detecting p.G13D mutated DNA in buffer and spiked human plasma at attomolar level (down to 300 copies mL-1) with minimal sample manipulation and in just a few microliters. The assay was validated using plasma samples from colorectal cancer patients and healthy donors, by discriminating mutated DNA circulating in patients and wild-type DNA found in healthy blood donors. This feature underscores the potential of the liquid biopsy assay as a valuable tool for the diagnosis and monitoring of cancer.
Keywords: Circulating tumour DNA; KRAS; Peptide nucleic acids; Superparamagnetic particles; Surface plasmon resonance.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.