Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1--1.5 g/L) monotonically improved the lignin degradation from 22 % to 33 % under nitrogen-limited conditions. Hierarchical utilization of heterogenous compounds under cell growth restricted conditions has been unveiled - simple carbon sources were prioritized for valorization, followed by aromatic compounds bioconversion. Based on the results of hierarchy and leveraging the initial bacterial biomass, acetate was augmented to facilitate one-pot lignin bioconversion under nitrogen-limited conditions. This approach improved lignin bioconversion closer to its upper degradation limit of 35 %, concomitant with PHA yield of 39 mg/g-lignin. Anaerobic digestion of lignocellulose was redesigned to favor acetate-type fermentation, with acetate constituting 91 wt%, providing an economic source of acetate.
Keywords: Anaerobic digestion; Bioplastic; Lignin valorization; Lignocellulose Fermentation; Volatile fatty acids.
Copyright © 2025. Published by Elsevier Ltd.