[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway]

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2025 Jan;41(1):9-16.
[Article in Chinese]

Abstract

Objective To study the impacts of curcumin on the proliferation, migration and cisplatin (DDP) resistance of bladder cancer cells by regulating the liver kinase B1-AMP activated protein kinase-microtubule-associated protein 1 light chain 3 (LKB1-AMPK-LC3) signaling pathway. Methods Human bladder cancer cell line T24 was cultured in vitro, and its DDP resistant T24/DDP cells were induced by cisplatin (DDP). After treating T24 and T24/DDP cells with different concentrations of curcumin, the optimal concentration of curcumin was screened by MTT assay. T24 cells were randomly grouped into control group, curcumin group, metformin group, and combination group of curcumin and metformin. After treatment with curcumin and LKB1-AMPK activator metformin, the proliferation, autophagy, migration, and apoptosis of T24 cells in each group were detected by MTT assay, monodansylcadavrine (MDC) fluorescence staining, cell scratch assay, and flow cytometry, respectively. Western blot was used to detect the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24 cells of each group. T24/DDP cells were randomly assigned into control group, curcumin group, metformin group, and combination group of curcumin and metformin. Cells were treated with curcumin and metformin according to grouping and treated with different concentrations of DDP simultaneously. Then, the effect of curcumin on the DDP resistance coefficient of T24/DDP cells was detected by MTT assay. T24/DDP cells were randomly grouped into control group, DDP group, combination groups of DDP and curcumin, DDP and metformin, DDP, curcumin and metformi. After treatment with DDP, curcumin, and metformin, the proliferation, autophagy, migration, apoptosis, drug resistance, and the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24/DDP cells of each group were detected with the same methods. Results Compared with the control group, the activity of T24 cells, relative number of autophagosomes, migration rate, Phosphorylated-LKB1 (p-LKB1)/LKB1, Phosphorylated-AMPK (p-AMPK)/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the curcumin group were lower, and the apoptosis rate of T24 cells was higher; the changes in various indicators in the metformin group were opposite to those in the curcumin group. Compared with the curcumin group, the activity of T24 cells, relative number of autophagosomes, migration rate, p-LKB1/LKB1, p-AMPK/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the combination group of curcumin and metformin were higher, and the apoptosis rate of T24 cells was lower. Compared with the control group, there were no obvious changes in various indicators of T24/DDP cells in the DDP group. Compared with the control group and DDP group, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-glycoprotein (P-gp) protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP and curcumin were lower, and the apoptosis rate of T24/DDP cells was higher; the changes in the above indicators in the combination group of DDP and metformin were opposite to those in the combination group of DDP and curcumin. Compared with the combination group of DDP and curcumin, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-gp protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP, curcumin and metformin were higher, and the apoptosis rate of T24/DDP cells was lower. Conclusion Curcumin can reduce the activity of LKB1-AMPK-LC3 signaling pathway, thereby inhibiting autophagy, proliferation and migration of bladder cancer cells, promoting their apoptosis, and weakening their resistance to DDP.

Publication types

  • English Abstract

MeSH terms

  • AMP-Activated Protein Kinase Kinases*
  • AMP-Activated Protein Kinases* / metabolism
  • Antineoplastic Agents / pharmacology
  • Apoptosis / drug effects
  • Autophagy / drug effects
  • Cell Line, Tumor
  • Cell Movement* / drug effects
  • Cell Proliferation* / drug effects
  • Cisplatin* / pharmacology
  • Curcumin* / pharmacology
  • Drug Resistance, Neoplasm* / drug effects
  • Humans
  • Metformin / pharmacology
  • Microtubule-Associated Proteins / genetics
  • Microtubule-Associated Proteins / metabolism
  • Protein Serine-Threonine Kinases* / genetics
  • Protein Serine-Threonine Kinases* / metabolism
  • Signal Transduction* / drug effects
  • Urinary Bladder Neoplasms* / drug therapy
  • Urinary Bladder Neoplasms* / metabolism
  • Urinary Bladder Neoplasms* / pathology

Substances

  • Curcumin
  • Cisplatin
  • STK11 protein, human
  • Protein Serine-Threonine Kinases
  • AMP-Activated Protein Kinase Kinases
  • AMP-Activated Protein Kinases
  • Microtubule-Associated Proteins
  • MAP1LC3A protein, human
  • Metformin
  • Antineoplastic Agents