Structural and Functional Glycosylation of the Abdala COVID-19 Vaccine

Glycobiology. 2025 Jan 12:cwaf001. doi: 10.1093/glycob/cwaf001. Online ahead of print.

Abstract

Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P. pastoris is used as an expression system for protein-based vaccines, yeast glycosylation remains largely uncharacterised across immunogens. Here, we characterise N-glycan structures and their site of attachment on Abdala and show how yeast-specific glycosylation decreases binding to the ACE2 receptor and a receptor-binding motif (RBM) targeting antibody compared to the equivalent mammalian-derived RBD. Reduced receptor and antibody binding is attributed to changes in conformational dynamics resulting from N-glycosylation. These data highlight the critical importance of glycosylation in vaccine design and demonstrate how individual glycans can influence host interactions and immune recognition via protein structural dynamics.

Keywords: Abdala; Glycomics; SARS-CoV-2; mass photometry; vaccine.