LiNi0.5Mn1.5O4 (LNMO), with its high operating voltage, is a favorable cathode material for lithium-ion batteries. However, Ni and Mn dissolution and the associated low cycle life limit their widespread adoption. In this work, we investigate titanium doping as a strategy to mitigate Mn and Ni dissolution from LNMO electrodes. We demonstrate bulk doping of Ti in LNMO up to nominal compositions of x = 0.15 in LiNi0.5Mn1.5-x Ti x O4. Electrochemical characterization shows that titanium doping enhances the cycle life in LNMO-based half- and full cells with a negligible decrease in capacity or rate capability. Half-cells with LiNi0.5Mn1.35Ti0.15O4 cathodes and lithium anodes exhibited a capacity retention of 90% after 300 cycles at 1C. Li4Ti5O12/LiNi0.5Mn1.35Ti0.15O4 full cells with Li4Ti5O12 anodes cycled at 1C rate to 100% depth of discharge retained ∼73% of the original capacity at the end of 1000 cycles. Our work shows that cathode modification strategies could still be used for enhancing the electrochemical performance of high-voltage cathodes, while using conventional Li-ion battery electrolytes. Improving the cathode stability in conjunction with electrolyte modification could enable the development of practical high-voltage Li-ion batteries.
© 2024 The Authors. Published by American Chemical Society.