Study on the Effect of Quinoa Saponins on Human Colon Cancer HT-29 Cells

Food Sci Nutr. 2024 Dec 19;13(1):e4669. doi: 10.1002/fsn3.4669. eCollection 2025 Jan.

Abstract

Quinoa saponins can inhibit the survival of specific cancer cells. However, there is still a lack of systematic research on the effects of quinoa saponins on colon cancer cells. This experiment confirmed that quinoa saponins prevented human colon cancer HT-29 cells from growing in vitro. The MTT experiment revealed that quinoa saponins significantly decreased the proliferative vitality of HT-29 cells. In comparison to the control group, the proportion of cell number in the G0/G1 phase increased by 22.97% and the rate of apoptosis increased by 22.55% after treating cells with quinoa saponins (40 μg/mL). By regulating the expression of Cyclin D1 and p21, it caused the cell cycle to be blocked in the G0/G1 phase. It also promoted the expression of Caspase3 and Bax while suppressing the expression of Bcl-2, which led to the apoptosis of HT-29 cells. In addition, quinoa saponins caused cells to undergo autophagy by upregulating the expression of LC-3II and Beclin1, while the addition of autophagy inhibitors significantly reduced the inhibitory effect on cell proliferation. Finally, the migration of HT-29 cells was also inhibited by quinoa saponins. After treating cells with quinoa saponins (40 μg/mL), compared with that in the control group, the wound healing rate of cells decreased by 38.21% and the migration ability decreased by 69.48%. The potential mechanism could be connected to increasing E-cadherin expression while decreasing N-cadherin expression. Importantly, all of these changes induced by quinoa saponins were dose dependent. Overall, these findings give a scientific basis for the anticancer mechanism of quinoa saponins.

Keywords: apoptosis; autophagy; cell cycle; colon cancer; migration; quinoa saponins.