Microtubule acetylation, a post-translational modification catalyzing the addition of acetyl groups to lysine residues on alpha tubulin, confers mechanical resilience to microtubules and influences intracellular cargo transport. Despite its known cellular functions, its role in viral infections remains poorly understood. The goal of this study was to determine the role of microtubule acetylation in both HIV-1 infection and TRIM69-mediated restriction. To this end, we generated CRIPSR/Cas9 vectors to disrupt alpha-tubulin acetyltransferase (αTAT1), the main enzyme responsible for microtubule acetylation. We assessed the role of acetylation in HIV-1 infectivity and the degree to which TRIM69 relies on microtubule acetylation for its ability to restrict HIV-1. We determined that microtubule acetylation is not required for HIV-1 infection and that preventing microtubule acetylation actually leads to a modest increase in HIV-1 infection. We also determined that TRIM69 can restrict a diverse range of viruses and that its restriction of HIV-1 does not rely on microtubule acetylation.
Importance: Although microtubule acetylation is a well-studied post-translational modification in the context of cellular processes, its role during viral infections remains underexplored. Existing studies often rely on various protein and drug perturbations to indirectly examine microtubule acetylation. In this study, we directly target the enzyme responsible for microtubule acetylation to delineate its role in both HIV-1 infection and TRIM69-mediated restriction.
Keywords: HIV-1; TRIM69; acetylated microtubules; microtubules.