Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes

ACS Nano. 2025 Jan 13. doi: 10.1021/acsnano.4c12035. Online ahead of print.

Abstract

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr3 within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process. Two resonant peaks in the frequency-dependent photoconductivity are interpreted by the Drude-Smith-Lorentz model along with the ab initio excitation calculation, revealing that the electron-/hole-polaron is related to the vibration modes of the stretched/contracted Pb-Br bond. The red /blue shift of the corresponding peaks as the fingerprints of electron-/hole-polaron provides a channel for observing their dynamic behavior. Different from polarons with long lifetime (>300 ps) in single-crystalline grains, we observed in thin films the transient process from the formation to the dissociation of polarons occurring at timescales within ∼5 ps, resulting from the Mott phase transition for carriers at high concentrations. Moreover, the observation of the polaron dynamic process of the virtual state-assisted band gap transition (800 nm excitation) further reveals the competition of carriers cooling and polaron formation with photocarrier density. Our observations demonstrate a strategy for direct observation and manipulation of bipolar polaron transport in hybrid perovskites.

Keywords: THz spectroscopy; electron−phonon interaction; polaron; recombination; transient processes.