Interatomic Coulombic decay in lithium-doped large helium nanodroplets induced by photoelectron impact excitation

Rep Prog Phys. 2025 Jan 13. doi: 10.1088/1361-6633/ada98f. Online ahead of print.

Abstract

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets. Specifically, Li ions are efficiently produced by an interatomic Coulombic decay (ICD) process involving metastable He* atoms and He2* excimers which are populated by elastic and inelastic scattering of photoelectrons in the nanodroplets as well as by electron-ion recombination. This type of indirect ICD, observed in large He nanodroplets in nearly the entire XUV range, turns out to be more efficient than Li dopant ionization by ICD following direct resonant photoexcitation at hν = 21.6 eV and by charge-transfer ionization. Indirect ICD processes induced by scattering of photoelectrons likely play an important role in other condensed phase systems exposed to ionizing radiation as well, including biological matter.

Keywords: Interatomic decay processes; Lithium doped He nanodroplets; Photoelectron impact excitation; XUV photoionization; electron-ion coincidence spectroscopy; electron-ion recombination.