Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).
Approach: Previous studies have identified that the peak power spectral density (PSD) value in sensorimotor idling rhythms is a neural correlate of participants' upper limb MI-BCI performances. In this active-controlled, single-blind study, we applied 20 minutes of tACS at the participant-specific, peak µ frequency in resting-state sensorimotor rhythms (SMRs), with the goal of enhancing resting-state µ SMRs.
Main results: After tACS, we observed significant improvements in event-related desynchronizations (ERDs) of µ sensorimotor rhythms (SMRs), and in the performance of an online MI-BCI that decodes left versus right hand commands in healthy participants (N=10) -but not in an active control-stimulation control group (N=10). Lastly, we showed a significant correlation between the resting-state µ SMRs and µ ERD, offering a mechanistic interpretation behind the observed changes in online BCI performances.
Significance: Our research lays the groundwork for future non-invasive interventions designed to enhance BCI performances, thereby improving the independence and interactions of individuals who rely on these systems.
Keywords: Brain-computer interface; EEG; Motor imagery; Sensorimotor rhythms; Transcranial alternating current stimulation.
Creative Commons Attribution license.