Nanopore-based consensus sequencing enables accurate multimodal tumor cell-free DNA profiling

Genome Res. 2025 Jan 13:gr.279144.124. doi: 10.1101/gr.279144.124. Online ahead of print.

Abstract

Shallow genome-wide cell-free DNA (cfDNA) sequencing holds great promise for non-invasive cancer monitoring by providing reliable copy number alteration (CNA) and fragmentomic profiles. Single nucleotide variations (SNVs) are, however, much harder to identify with low sequencing depth due to sequencing errors. Here we present Nanopore Rolling Circle Amplification (RCA)-enhanced Consensus Sequencing (NanoRCS), which leverages RCA and consensus calling based on genome-wide long-read nanopore sequencing to enable simultaneous multimodal tumor fraction estimation through SNVs, CNAs, and fragmentomics. Efficacy of NanoRCS is tested on 18 cancer patient samples and seven healthy controls, demonstrating its ability to reliably detect tumor fractions as low as 0.24%. In vitro experiments confirm that SNV measurements are essential for detecting tumor fractions below 3%. NanoRCS provides the opportunity for cost-effective and rapid processing, which aligns well with clinical needs, particularly in settings where quick and accurate cancer monitoring is essential for personalized treatment strategies.