Enzyme-powered synthetic colloidal motors hold promising potential for in vivo medical applications because of their unique features such as self-propulsion, sub-micrometer size, fuel bioavailability, and structural and functional versatility. However, the key parameters influencing the propulsion efficiency of enzyme-powered colloidal motors still remain unclear. Here, we report the effect of the neck length of urease-powered pentosan flask-like colloidal motors on their kinematic behavior resembling the role of bacterial flagella. The sub-micrometer-sized and streamlined pentosan flask-like colloidal motors with variable neck lengths are synthesized through a facile interfacial dynamic assembly and polymerization strategy. The urease molecules are loaded through vacuum infusion technology and thus the urease-triggered catalytic reaction can propel the pentosan flask-like colloidal motors to move autonomously in the urea solution. The self-propelled speed of these pentosan flask-like colloidal motors significantly increases with the elongating neck lengths. The mechanism of the relationship between the neck length and self-propelled motion is that a longer neck can provide a larger self-propelled force due to the larger force area and stabilize the rotation because of the increased rotational friction. This research can provide guidance for the design of biomedical colloidal motors.