A mouse coccygeal intervertebral disc degeneration model with tail-looping constructed using a suturing method

Animal Model Exp Med. 2025 Jan 14. doi: 10.1002/ame2.12501. Online ahead of print.

Abstract

Backgroud: Intervertebral disc degeneration (IDD) is one of the common degenerative diseases. Due to ethical constraints, it is difficult to obtain sufficient research on humans, so the use of an animal model of IDD is very important to clarify the pathogenesis and treatment mechanism of the disease.

Methods: In this study, thirty 2-month-old mice were selected for operation to establish a coccygeal IDD model. The distal tail portion of the tail (beyond the 17th coccygeal vertebra) and a small piece of skin above the 8th coccygeal vertebra were excised, and the two incisions were brought together after flexion, and secured with sutures. The heights and signal intensities of the intervertebral discs (IVDs) were assessed using microcomputed tomography (μCT) and magnetic resonance imaging (MRI) at 0, 6, 12 weeks postoperatively. The overall tissue morphology, cell distribution and density, and extracellular matrix of the IVDs were also assessed using Hematoxylin and Eosin (HE), Safranin O-Fast Green and immunohistochemical staining.

Results: All mice in the experimental group survived after the operation, and there were no complications such as wound infection, tail necrosis and suture shedding. The experimental results demonstrated that the suturing method can successfully initiate IDD. Different severity levels of IDD can be induced by controlling the bending angle of the IVDs within the tail loop; however, for consistency, histologic and imaging results should be obtained at the same bending angle and looping period.

Conclusions: This IDD model is an effective method for studying the etiology and treatment of degenerative IVD disease.

Keywords: animal model; intervertebral disc degeneration; mechanical stress; mice.