Interpretable machine learning models for COPD ease of breathing estimation

Med Biol Eng Comput. 2025 Jan 14. doi: 10.1007/s11517-025-03285-2. Online ahead of print.

Abstract

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide and greatly reduces the quality of life. Utilizing remote monitoring has been shown to improve quality of life and reduce exacerbations, but remains an ongoing area of research. We introduce a novel method for estimating changes in ease of breathing for COPD patients, using obstructed breathing data collected via wearables. Physiological signals were recorded, including respiratory airflow, acceleration, audio, and bio-impedance. By comparing patient-specific measurements, this approach enables non-intrusive remote monitoring. We analyze the influence of signal selection, window parameters, feature engineering, and classification models on predictive performance, finding that acceleration signals are most effective, complemented by audio signals. The best model achieves an F1-score of 0.83. To facilitate clinical adoption, we incorporate interpretability by designing novel saliency map methods, highlighting important aspects of the signals. We adapt local explainability techniques to time series and introduce a novel imputation method for periodic signals, improving faithfulness to the data and interpretability.

Keywords: Chronic obstructive pulmonary disease (COPD); Interpretability; Machine learning; Respiratory monitoring; Time series classification.