Objectives: To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.
Methods: A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance. The other cohort, consisting of 959 patients with pathologically confirmed adrenal lesions (external validation dataset 1), was included for validation of the classification performance of this model. Then, another consecutive cohort of patients with a history of malignancy (N = 479) was used for validation in the screening population (external validation dataset 2). Parameters of sensitivity, accuracy, etc., were used, and the performance of the model was compared to the radiology report in these validation scenes.
Results: The DSC of the test set of the segmentation model was 0.900 (0.810-0.965) (median (interquartile range)). The model showed sensitivities and accuracies of 99.7%, 98.3% and 87.2%, 62.2% in external validation datasets 1 and 2, respectively. It showed no significant difference comparing to radiology reports in external validation datasets 1 and lesion-containing groups of external validation datasets 2 (p = 1.000 and p > 0.05, respectively).
Conclusion: The 3D V-Net-based segmentation model of adrenal lesions can be used for the binary classification of adrenal glands.
Critical relevance statement: A 3D V-Net-based segmentation model of adrenal lesions can be used for the detection of abnormalities of adrenal glands, with a high accuracy in the pre-surgical scene as well as a high sensitivity in the screening scene.
Key points: Adrenal lesions may be prone to inter-observer variability in routine diagnostic workflow. The study developed a 3D V-Net-based segmentation model of adrenal lesions with DSC 0.900 in the test set. The model showed high sensitivity and accuracy of abnormalities detection in different scenes.
Keywords: Adrenal gland; Classification; Computed tomography; Deep learning; Segmentation.
© 2025. The Author(s).