PADS-Net: GAN-based radiomics using multi-task network of denoising and segmentation for ultrasonic diagnosis of Parkinson disease

Comput Med Imaging Graph. 2025 Jan 8:120:102490. doi: 10.1016/j.compmedimag.2024.102490. Online ahead of print.

Abstract

Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images. A composite loss function including the mean absolute error, the mean squared error and the Dice loss, is adopted in the PADS-Net to effectively capture image details. The PADS-Net also integrates radiomics techniques for PD diagnosis by exploiting high-throughput features from ultrasound images. A four-branch ensemble diagnostic model is designed by utilizing two "wings" of the butterfly-shaped midbrain regions on both ipsilateral and contralateral images to enhance the accuracy of PD diagnosis. Experimental results demonstrate that the PADS-Net not only reduced speckle noise, achieving the edge-to-noise ratio of 16.90, but also attained a Dice coefficient of 0.91 for midbrain segmentation. The PADS-Net finally achieved an area under the receiver operating characteristic curve as high as 0.87 for diagnosis of PD. Our PADS-Net excels in transcranial ultrasound image denoising and segmentation and offers a potential clinical solution to accurate PD assessment.

Keywords: Denoising; Multi-task learning; Parkinson disease; Segmentation; Transcranial ultrasound imaging.