Investigating the potential of geothermal heat pump and precision air supply system for heat stress abatement in dairy cattle barns

J Therm Biol. 2025 Jan 8:127:104039. doi: 10.1016/j.jtherbio.2024.104039. Online ahead of print.

Abstract

Maintaining an optimal indoor thermal environment is crucial for enhancing the welfare and productivity of livestock in intensive breeding farms. This paper investigated the application of a combined geothermal heat pump with a precision air supply (GHP-PAS) system for cooling dairy cows on a dairy farm. The effectiveness of the GHP-PAS system in mitigating heat stress in lactating dairy cattle, along with its energy performance and local cooling efficiency in the free stalls were evaluated. A total of 140 multiparous lactating Holstein cows was tested in two groups. One group was housed in a barn equipped with a GHP-PAS system (GP barn, n = 70), and the other was housed in a barn with a conventional fan-sprinkling system (FS barn, n = 70). Results showed that the ambient temperature of both GP and FS barns were lower than that outside the barn (P < 0.05), with no significant difference between the GP and FS barns (P > 0.05). Compared to cows in the FS barn, those in the GP barn exhibited lower skin temperature, rectal temperature, and respiratory rate (P < 0.05). The mean temperature difference between outflow and inflow water was 2.56 °C of the GHP unit. The average energy efficiency ratios (EER) of the GHP unit and the GHP-PAS system were 5.03 and 2.92, respectively. The daily average electricity consumption was 20.4 ± 1.0 kWh. The field test results indicated that the airflow from a single nozzle of the GHP-PAS system effectively covered a stall space with an average width of 1.84 m at a cow reclining height of 0.5 m, with an average air velocity of 1 m/s. The per-cow hourly electricity consumption for cooling was 2.04 kWh for the GHP-PAS system and 0.36 kWh for the FS system, highlighting that the GHP-PAS system is approximately 5.6 times more energy-intensive than the FS system. In conclusion, the GHP-PAS system showed the potential for alleviating heat stress in dairy cows. Further research is needed to enhance the energy efficiency and cooling effectiveness of the current GHP-PAS system.

Keywords: Cooling; Dairy cow; Geothermal heat pump; Heat stress; Physiological responses.