DECT sparse reconstruction based on hybrid spectrum data generative diffusion model

Comput Methods Programs Biomed. 2025 Jan 9:261:108597. doi: 10.1016/j.cmpb.2025.108597. Online ahead of print.

Abstract

Purpose: Dual-energy computed tomography (DECT) enables the differentiation of different materials. Additionally, DECT images consist of multiple scans of the same sample, revealing information similarity within the energy domain. To leverage this information similarity and address safety concerns related to excessive radiation exposure in DECT imaging, sparse view DECT imaging is proposed as a solution. However, this imaging method can impact image quality. Therefore, this paper presents a hybrid spectrum data generative diffusion reconstruction model (HSGDM) to improve imaging quality.

Method: To exploit the spectral similarity of DECT, we use interleaved angles for sparse scanning to obtain low- and high-energy CT images with complementary incomplete views. Furthermore, we organize low- and high-energy CT image views into multichannel forms for training and inference and promote information exchange between low-energy features and high-energy features, thus improving the reconstruction quality while reducing the radiation dose. In the HSGDM, we build two types of diffusion model constraint terms trained by the image space and wavelet space. The wavelet space diffusion model exploits mainly the orientation and scale features of artifacts. By integrating the image space diffusion model, we establish a hybrid constraint for the iterative reconstruction framework. Ultimately, we transform the iterative approach into a cohesive sampling process guided by the measurement data, which collaboratively produces high-quality and consistent reconstructions of sparse view DECT.

Results: Compared with the comparison methods, this approach is competitive in terms of the precision of the CT values, the preservation of details, and the elimination of artifacts. In the reconstruction of 30 sparse views, with increases of 3.51 dB for the peak signal-to-noise ratio (PSNR), 0.03 for the structural similarity index measure (SSIM), and a reduction of 74.47 for the Fréchet inception distance (FID) score on the test dataset. In the ablation study, we determined the effectiveness of our proposed hybrid prior, consisting of the wavelet prior module and the image prior module, by comparing the visual effects and quantitative results of the methods using an image space model, a wavelet space model, and our hybrid model approach. Both qualitative and quantitative analyses of the results indicate that the proposed method performs well in sparse DECT reconstruction tasks.

Conclusion: We have developed a unified optimized mathematical model that integrates the image space and wavelet space prior knowledge into an iterative model. This model is more practical and interpretable than existing approaches are. The experimental results demonstrate the competitive performance of the proposed model.

Keywords: DECT; Diffusion model; Sparse view reconstruction; Wavelet space.