Surface Oxygen Vacancies on Copper-Doped Titanium Dioxide for Photocatalytic Nitrate-to-Ammonia Reduction

J Am Chem Soc. 2025 Jan 15;147(2):1968-1979. doi: 10.1021/jacs.4c14804. Epub 2024 Dec 29.

Abstract

Photocatalytic transformation of nitrate (NO3-) in wastewater into ammonia (NH3) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO2) powders, prepared via the sol-gel method and subsequent calcination, promote NO3--to-NH3 reduction in water. The Cu2+ doping into TiO2 creates a large number of surface oxygen vacancies (OVsurf), which are stable even under aerated conditions. The Ti3+ and Cu2+ atoms adjacent to OVsurf behave as active sites for the NO3--to-NH3 reduction. Doping with an appropriate amount of Cu2+ and calcination at an appropriate temperature produce the catalysts with a large number of OVsurf, while maintaining a high conductivity, and exhibit a high photocatalytic activity.