Background: The large language model ChatGPT can now accept image input with the GPT4-vision (GPT4V) version. We aimed to compare the performance of GPT4V to pretrained U-Net and vision transformer (ViT) models for the identification of the progression of multiple sclerosis (MS) on magnetic resonance imaging (MRI).
Methods: Paired coregistered MR images with and without progression were provided as input to ChatGPT4V in a zero-shot experiment to identify radiologic progression. Its performance was compared to pretrained U-Net and ViT models. Accuracy was the primary evaluation metric and 95% confidence interval (CIs) were calculated by bootstrapping. We included 170 patients with MS (50 males, 120 females), aged 21-74 years (mean 42.3), imaged at a single institution from 2019 to 2021, each with 2-5 MRI studies (496 in total).
Results: One hundred seventy patients were included, 110 for training, 30 for tuning, and 30 for testing; 100 unseen paired images were randomly selected from the test set for evaluation. Both U-Net and ViT had 94% (95% CI: 89-98%) accuracy while GPT4V had 85% (77-91%). GPT4V gave cautious nonanswers in six cases. GPT4V had precision (specificity), recall (sensitivity), and F1 score of 89% (75-93%), 92% (82-98%), 91 (82-97%) compared to 100% (100-100%), 88 (78-96%), and 0.94 (88-98%) for U-Net and 94% (87-100%), 94 (88-100%), and 94 (89-98%) for ViT.
Conclusion: The performance of GPT4V combined with its accessibility suggests has the potential to impact AI radiology research. However, misclassified cases and overly cautious non-answers confirm that it is not yet ready for clinical use.
Relevance statement: GPT4V can identify the radiologic progression of MS in a simplified experimental setting. However, GPT4V is not a medical device, and its widespread availability highlights the need for caution and education for lay users, especially those with limited access to expert healthcare.
Key points: Without fine-tuning or the need for prior coding experience, GPT4V can perform a zero-shot radiologic change detection task with reasonable accuracy. However, in absolute terms, in a simplified "spot the difference" medical imaging task, GPT4V was inferior to state-of-the-art computer vision methods. GPT4V's performance metrics were more similar to the ViT than the U-net. This is an exploratory experimental study and GPT4V is not intended for use as a medical device.
Keywords: Artificial intelligence; Automatic data processing; Brain; Disease progression; Multiple sclerosis.
© 2025. The Author(s).