Inhibitory and Curative Effects and Mode of Action of Hydroxychloroquine on Botrytis cinerea of Tomato

Phytopathology. 2025 Jan 15. doi: 10.1094/PHYTO-12-24-0397-R. Online ahead of print.

Abstract

Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine. This study evaluated the inhibitory activity of hydroxychloroquine against several phytopathogenic fungi, finding a half-maximal effective concentration of 113.82 μg/ml against the hyphal growth of Botrytis cinerea, with significant in-vivo curative effects of 92.37% or 78.37% for gray mold on detached tomato leaves or fruits at 10.0 or 200.0 mg/ml, respectively. Ultrastructural studies indicated that hydroxychloroquine induced collapse of hyphae, with a wrinkled surface, unclear organelle boundaries, and organelle disintegration. Transcriptomic assays revealed that hydroxychloroquine could affect the expression of metabolism-related genes. Molecular docking and molecular dynamics analyses indicated that hydroxychloroquine bound to glucose-methanol-choline oxidoreductase, with low free energy value of -11.4 kcal/mol. Cell membrane permeability assays and hyphal staining confirmed that hydroxychloroquine damaged the cell membrane, causing leakage of hyphal contents and disturbing cell function. Biochemical assays indicated that hydroxychloroquine reduced the concentration of soluble proteins and reducing sugars in the hyphae. In total, hydroxychloroquine disturbed amino acid metabolism, therefore inhibiting the production of biomacromolecules, damaging the cell membrane, and restraining the growth of hyphae, and hence inhibiting gray mold on tomato. This study will explore the use of medicine in the development of agricultural fungicides and their application in managing crop diseases, providing valuable background information.

Keywords: Antimicrobial or Fungicide Resistance; Bioinformatics; Biotechnology; Chemical Control; Disease Control and Pest Management; Fungal Pathogens; Genomics.