Background: Patients undergoing liver transplantation (LT) are at risk of perioperative neurocognitive dysfunction (PND), which significantly affects the patients' prognosis.
Objective: This study used machine learning (ML) algorithms with an aim to extract critical predictors and develop an ML model to predict PND among LT recipients.
Methods: In this retrospective study, data from 958 patients who underwent LT between January 2015 and January 2020 were extracted from the Third Affiliated Hospital of Sun Yat-sen University. Six ML algorithms were used to predict post-LT PND, and model performance was evaluated using area under the receiver operating curve (AUC), accuracy, sensitivity, specificity, and F1-scores. The best-performing model was additionally validated using a temporal external dataset including 309 LT cases from February 2020 to August 2022, and an independent external dataset extracted from the Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ) database including 325 patients.
Results: In the development cohort, 201 out of 751 (33.5%) patients were diagnosed with PND. The logistic regression model achieved the highest AUC (0.799) in the internal validation set, with comparable AUC in the temporal external (0.826) and MIMIC-Ⅳ validation sets (0.72). The top 3 features contributing to post-LT PND diagnosis were the preoperative overt hepatic encephalopathy, platelet level, and postoperative sequential organ failure assessment score, as revealed by the Shapley additive explanations method.
Conclusions: A real-time logistic regression model-based online predictor of post-LT PND was developed, providing a highly interoperable tool for use across medical institutions to support early risk stratification and decision making for the LT recipients.
Keywords: MIMIC-Ⅳ database; external validation; liver transplantation; machine learning; perioperative neurocognitive disorders; risk factors.
©Zhendong Ding, Linan Zhang, Yihan Zhang, Jing Yang, Yuheng Luo, Mian Ge, Weifeng Yao, Ziqing Hei, Chaojin Chen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 15.01.2025.