The application of organic substances to the agricultural field has effectively enhanced soil nutrient levels and crop yields. Biodegradable microplastics (bio-MPs), a pervasive emerging contaminant, may potentially impact the soil ecosystem through their aging process. Here, a 150-day dark incubation experiment was conducted to elucidate the disparities in the aging process of polylactic acid bio-MPs (PLA-MPs) in soils with contrasting C/N ratios of organic substances, as the mechanisms underlying this process remain unclear. The study found that PLA-MPs resulted in an increase in soil pH, nutrient levels, and organic carbon content in soil-straw system. Additionally, PLA-MPs significantly influenced bacterial community composition and microbial metabolic activity in soil-straw system. Notably, more pronounced aging features of PLA-MPs was observed in soil-straw system (lower soil nitrogen environment) compared to soil-fertilizer system (higher soil nitrogen environment). Under lower soil nitrogen conditions, microorganisms may accelerate the aging process of PLA-MPs due to their preference for readily available energy sources; conversely, under higher soil nitrogen conditions, the aging of PLA-MPs may be decelerated as microorganisms preferentially utilize substances with easily accessible energy sources. Our findings provide valuable insights into the interaction between PLA-MPs and soil amended with the organic substances of contrasting C/N ratios.
Keywords: Aging process; Biodegradable microplastics; Organic fertilizer; Paddy soil; Straw return.
Copyright © 2025 Elsevier B.V. All rights reserved.