Vitiligo is a common chronic skin depigmentation disorder that seriously decreases the patients' overall quality of life. Human blood metabolites could contribute to unraveling the underlying biological mechanisms of vitiligo. We used GWAS summary statistics to assess the causal association between genetically predicted 1,400 serum metabolites and vitiligo risk by Mendelian randomization (MR). Then, after constructing the mouse model of vitiligo, we did non-targeted metabolomics analysis on the mouse serum and validated MR's pathway enrichment results ulteriorly. In the initial phase, MR analysis revealed causative associations between 36 metabolites and vitiligo risk, including 8 metabolite ratios and 28 individual metabolites (19 known and 9 unknown metabolites). In the validation stage, 7 metabolites were successfully validated. Of the 28 individual metabolites, most are related to lipid metabolism. Genetically predicted higher 4-oxo-retinoic acid showed the strongest protective effect on vitiligo, while the most potent risk effect was the increase in quinate. The metabolites associated with vitiligo risk are mainly enriched in alpha-linolenic acid metabolism, linoleic acid metabolism, arginine biosynthesis and metabolism pathways, validated through the serum metabolomics of vitiligo mouse. By integrating genomics and metabolomics, this study provides new insights into the association between metabolites and vitiligo, highlighting the potential roles of specific metabolites in the pathogenesis of vitiligo. These metabolites associated with vitiligo could serve as new biomarkers, further research could help to reveal how these metabolites influence specific pathways in the development of vitiligo.
Keywords: Mendelian randomization; causal effect; metabolites; metabolomics; vitiligo.
Copyright © 2025. Published by Elsevier Ltd.