Enhancing Real-Time Patient Monitoring in Intensive Care Units with Deep Learning and the Internet of Things

Big Data. 2025 Jan 17. doi: 10.1089/big.2024.0113. Online ahead of print.

Abstract

The demand for intensive care units (ICUs) is steadily increasing, yet there is a relative shortage of medical staff to meet this need. Intensive care work is inherently heavy and stressful, highlighting the importance of optimizing these units' working conditions and processes. Such optimization is crucial for enhancing work efficiency and elevating the level of diagnosis and treatment provided in ICUs. The intelligent ICU concept represents a novel ward management model that has emerged through advancements in modern science and technology. This includes communication technology, the Internet of Things (IoT), artificial intelligence (AI), robotics, and big data analytics. By leveraging these technologies, the intelligent ICU aims to significantly reduce potential risks associated with human error and improve patient monitoring and treatment outcomes. Deep learning (DL) and IoT technologies have huge potential to revolutionize the surveillance of patients in the ICUs due to the critical and complex nature of their conditions. This article provides an overview of the most recent research and applications of linical data for critically ill patients, with a focus on the execution of AI. In the ICU, seamless and continuous monitoring is critical, as even little delays in patient care decision-making can result in irreparable repercussions or death. This article looks at how modern technologies like DL and the IoT can improve patient monitoring, clinical results, and ICU processes. Furthermore, it investigates the function of wearable and advanced health sensors coupled with IoT networking systems, which enable the secure connection and analysis of various forms of patient data for predictive and remote analysis by medical professionals. By assessing existing patient monitoring systems, outlining the roles of DL and IoT, and analyzing the benefits and limitations of their integration, this study hopes to shed light on the future of ICU patient care and identify opportunities for further research.

Keywords: IoT diagnosis; artificial intelligence; real-time patient monitoring.