Biological Effects of Calceolarioside A as a Natural Compound: Anti-Ovarian Cancer, Anti-Tyrosinase, and Anti-HMG-CoA Reductase Potentials with Molecular Docking and Dynamics Simulation Studies

Mol Biotechnol. 2025 Jan 17. doi: 10.1007/s12033-025-01369-w. Online ahead of print.

Abstract

One kind of hydroxycinnamic acid is calceolarioside A. Plantago coronopus, Cassinopsis madagascariensis, and other organisms for whom data are available are known to have this naturally occurring compound. IC50 values of Calceolarioside A for ovarian cell lines (NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, UWB1.289) were 24.42, 13.50, 9.31, 14.90, 20.07, and 16.18 µM, respectively. IC50 values were 19.83 and 73.48 µM for tyrosinase and HMG-CoA reductase enzymes. The chemical activities of Calceolarioside A against HMG-CoA reductase and tyrosinase were assessed by conducting the molecular docking study, MM/GBSA calculation, and molecular dynamics (MD) simulation. The anticancer activities of this compound were evaluated against some ovarian cancer cells, such as NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, and UWB1.289 cell lines. The chemical activities of Calceolarioside A against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor-Like 1, M2 muscarinic receptor, and estrogen receptors) were investigated using computational methods. The results exhibited the interplay among atoms. The compound formed robust associations with both the enzymes and receptors. Calceolarioside A can hinder the functioning of these enzymes and the proliferation of malignant cells.

Keywords: Anti-ovarian; HMG-CoA reductase; Molecular dynamics; Natural compound; Tyrosinase.