Acridine/Lewis Acid Complexes as Powerful Photocatalysts: A Combined Experimental and Mechanistic Study

ACS Catal. 2024 Oct 4;14(19):14574-14585. doi: 10.1021/acscatal.4c04897. Epub 2024 Sep 16.

Abstract

A class of in-situ generated Lewis acid (LA) activated acridine complexes is reported, which act as potent photochemical catalysts for the oxidation of a variety of protected secondary amines. Acridine/LA complexes exhibit tunable excited state reduction potentials ranging from +2.07 to 2.38 V vs. SCE. The ytterbium triflate complex of 3,6-di-t-butyl-9-mesitylacridine catalyzes a photochemical Giese-type reaction of Boc-protected secondary amines with challenging conjugate acceptors such as acrylates, that are inaccessible to the analogous acridinium (t-Bu-Mes-Acr) catalyzed reaction. The mechanism of this reaction was investigated using a suite of physical organic probes including intramolecular 13C kinetic isotope effects (KIEs), variable time normalization analysis (VTNA) kinetics, determination of redox potentials, and computational studies. In the reaction catalyzed by t-Bu-Mes-Acr, mechanistic studies are consistent with single-electron transfer (SET) from the ground-state reduced t-Bu-Mes-Acr to the α-keto radical intermediate as the first irreversible step in the catalytic cycle. Intriguingly, we find that the reduced acridine/LA complexes are better ground state reductants (-0.72 to -0.74 V vs SCE) relative to t-Bu-Mes-Acr (-0.59 V vs SCE) and predict that the increased substrate reactivity stems from a lower energy barrier for this key SET event.

Keywords: C–H functionalization; DFT calculations; Lewis acid activation; SET; acridine; isotope effects; photocatalysis.